COSEL | Basic Characteristics Data

Switching Series/Parallel Input Inrush PCB/Pattern frequency [kHz] operation availability Model Circuit method current current Parallel operation Double sided Single sided Series operation protection Material [A] (reference) MG1R5 *1 Flyback converter 200-1500 *3 glass fabric base,epoxy resin Yes Yes _ MGF1R5 *1 Flyback converter 120-1500 *3 _ glass fabric base,epoxy resin Yes Yes MGX1R5 Flyback converter 60-1000 *3 *1 Yes Yes glass fabric base, epoxy resin MG3 Flyback converter 200-1500 *3 *1 _ glass fabric base,epoxy resin Yes Yes *1 MGF3 Flyback converter 120-1500 *3 _ glass fabric base,epoxy resin Yes Yes MG6 Flyback converter 160-1500 *3 *1 glass fabric base,epoxy resin Yes Yes _ MGF6 Flyback converter 120-1500 *3 *1 _ glass fabric base,epoxy resin Yes Yes *1 MGX6 Flyback converter 100-1000 *3 _ glass fabric base,epoxy resin Yes Yes **MG10** Flyback converter 160-1500 *3 *1 glass fabric base,epoxy resin Yes Yes -MGF10 Flyback converter 120-1500 *3 *1 glass fabric base,epoxy resin Yes Yes _ **MG15** Flyback converter 445-495 *1 Yes Yes _ glass fabric base,epoxy resin MGF15 *1 Flyback converter 445-495 _ glass fabric base,epoxy resin Yes Yes MG30 Forward converter 380-460 *1 glass fabric base,epoxy resin Yes Yes _ MGF30 380-460 *1 Forward converter _ glass fabric base,epoxy resin Yes Yes

*****2

*2

*2

*****2

*2

*2

*2

*2

*2

*2

*2

*****2

*2

*2

Basic Characteristics Data

*1 Refer to Specification.

*2 Refer to Instruction Manual.

*3 The value changes depending on input and load.

DC-DC Converters PCB Mount Type Instruction Manual

MG15, MG30

M	G1R5, MG3, MG6, MG10	
1	Pin Configuration	MG-60
2	Function	MG-60
	 2.1 Input Voltage Range 2.2 Overcurrent Protection 2.3 Isolation 2.4 Remote ON/OFF 2.5 Output Voltage Adjustment Range 	- MG-60 - MG-60 - MG-60
3	Wiring to Input/Output Pin	MG-61
	3.1 Wiring input pin3.2 Wiring output pin	- MG-61 - MG-62
4	Series/Redundancy Operation	MG-62
	4.1 Series Operation4.2 Redundancy Operation	- MG-62 - MG-62
5	Input Voltage/Current Range	MG-63
6	Assembling and Installation	MG-63
	6.2 Soldering Conditions6.3 Stress to Pin	- MG-63
	6.4 Cleaning	- MG-63
7	Safety Standards	- MG-63 MG-63
7	5	
7 8	Safety Standards Output Derating 8.1 MG1R5 Derating Curve	MG-63 MG-64 MG-64 MG-64 MG-65 MG-65 MG-65 MG-66 MG-66 MG-66 MG-67 MG-67
7 8 9	Safety Standards Safety Standards Output Derating 8.1 MG1R5 Derating Curve 8.2 MG3 Derating Curve 8.3 MG6 Derating Curve 8.4 MG10 Derating Curve 8.5 MGF1R5 Derating Curve 8.6 MGF3 Derating Curve 8.7 MGF6 Derating Curve 8.8 MGF10 Derating Curve 8.9 MGX1R5 Derating Curve	MG-63 MG-64 MG-64 MG-64 MG-65 MG-65 MG-65 MG-66 MG-66 MG-66 MG-67 MG-67
7 8 9	Safety Standards Safety Standards Output Derating Curve 8.1 MG1R5 Derating Curve 8.2 MG3 Derating Curve 8.3 MG6 Derating Curve 8.4 MG10 Derating Curve 8.5 MGF1R5 Derating Curve 8.6 MGF3 Derating Curve 8.7 MGF6 Derating Curve 8.8 MGF10 Derating Curve 8.9 MGX1R5 Derating Curve 8.10 MGX6 Derating Curve 8.10 MGX6 Derating Curve	MG-63 MG-63 MG-64 MG-64 MG-65 MG-65 MG-65 MG-66 MG-66 MG-67 MG-68 MG-68
7 8 9 10	Safety Standards Safety Standards Output Derating Curve 8.1 MG1R5 Derating Curve 8.2 MG3 Derating Curve 8.3 MG6 Derating Curve 8.4 MG10 Derating Curve 8.5 MGF1R5 Derating Curve 8.6 MGF3 Derating Curve 8.7 MGF6 Derating Curve 8.8 MGF10 Derating Curve 8.9 MGX1R5 Derating Curve 8.10 MGX6 Derating Curve 8.10 MGX6 Derating Curve 8.10 MGX6 Derating Curve 8.10 MGX6 Derating Curve	MG-63 MG-63 MG-64 MG-64 MG-65 MG-65 MG-65 MG-66 MG-66 MG-67 MG-68 MG-68

1	Pin Configuration	MG-70
2	Function	MG-70
	2.5 Output Voltage Adjustment Range	MG-70 MG-70 MG-71
3	Wiring to Input/Output Pin	MG-71
	5 P P P	MG-71 MG-72
4	Series/Redundancy Operation	MG-72
	-	MG-72 MG-73
5	Input Voltage/Current Range	MG-73
6	Assembling and Installation	MG-73
	6.2 Soldering Conditions	MG-73 MG-73 MG-73 MG-73
7	Safety Standards	MG-74
8	Derating	MG-74
		MG-74 MG-74
9	Peak Current (Pulse Load)	MG-75
10	Using DC-DC Converters	MG-76
11	Note to use ±5V output	MG-77
12	Lifetime expectancy depends on stress by temperature difference	MG-77
	 12.1 MG15/MGF15 Lifetime expectancy depends on stress by temperature difference 12.2 MG30/MGF30 Lifetime expectancy depends on stress by temperature difference 	

1 Pin Configuration

Table 1.1 Pin Configuration and Functions(MG1R5/MG3 Single Output)

Pin No.	Pin Name	Function		
1	-Vin	-DC Input		
2	+Vin	+DC Input		
4	+Vout	+DC Output		
	NP	No Pin		
5	TRM	Output Voltage Adjustment (Option:Refer to 2.5)		
6	-Vout	-DC Output		

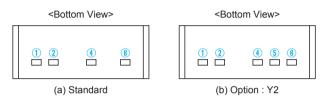


Fig.1.1 Pin Configuration(MG1R5/MG3 Single Output)

Table 1.2 Pin Configuration and Functions(MG1R5/MG3 Dual Output)

Pin No.	Pin Name	Function
1	-Vin	-DC Input
2	+Vin	+DC Input
4	+Vout	+DC Output
5	COM	GND of Output Voltage
6	-Vout	-DC Output

Fig.1.2 Pin Configuration(MG1R5/MG3 Dual Output)

Table 1.3 Pin Configuration and Functions(MG6/MG10)

Pin No.	Pin Name	Function		
1	-Vin	-DC Input		
2	+Vin	+DC Input		
3	RC	Remote ON/OFF		
	NC	No Connect		
5	TRM	Output Voltage Adjustment (Option:Refer to 2.5)		
6	+Vout	+DC Output		
(7)	-Vout	-DC Output (for Single Output)		
	COM	GND of Output Voltage (for Dual Output)		
8	NC	No Connect (for Single Output)		
	-Vout	-DC Output (for Dual Output)		

<Bottom View>

(a) Single Output, Dual Output Fig.1.3 Pin Configuration(MG6/MG10)

2 Function

2.1 Input Voltage Range

If output voltage value doesn't fall within specifications, a unit may not operate in accordance with specifications and/or fail.

2.2 Overcurrent Protection

Overcurrent protection is built-in and comes into effect at over 105% of the rated current.

Overcurrent protection prevents the unit from short circuit and overcurrent condition. The unit automatically recovers when the fault condition is cleared.

2.3 Isolation

- ■For a receiving inspection, such as Hi-Pot test, increase (decrease) the voltage gradually for a start (shut down). Avoid using Hi-Pot tester with timer because it may generate voltage a few times higher than the applied voltage, at ON/OFF of a timer.
- In the case of use in locations exposed to constant voltage between primary and secondary is applied, please contact us.

2.4 Remote ON/OFF(MG6, MG10)

- ■You can turn the power supply ON or OFF without turning input power ON or OFF through the pin terminal RC.
- ■Please keep the voltage level of the pin terminal RC(VRC) at 9.0V or below.

Table 2.1 Pin Specification of Remote ON/OFF

•	
Voltage Level of the pin terminal RC (VRC)	MG6/MG10 Output
Open or Short or $0V \leq V_{RC} \leq 0.3V$	ON
$2.0V \leq V_{RC} \leq 9.0V$	OFF

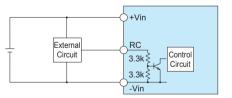


Fig.2.1 Internal Circuits of Remote ON/OFF

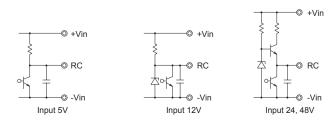


Fig.2.2 Examples of Using an External Remote ON/OFF Circuit

2.5 Output Voltage Adjustment Range

-Y2 (Excluding MGW1R5/MGW3/ MGFW1R5/MGFW3/MGXW1R5)

■The output voltage is adjustable through an external potentiometer. Adjust only within the range of +10%, -5% of the rated voltage.

To increase the output voltage, turn the potentiometer so that the resistance value between 2 and 3 becomes small.

Please use a wire as short as possible to connect to the potentiometer and connect it from the pin on the power supply side. Temperature coefficient deteriorates when some types of resistors and potentiometers are used. Please use the following types.

Resistor Metal Film Type, Temperature Coefficient of ±100ppm/°C or below

Potentiometer Cermet Type, Temperature Coefficient of ±300ppm/°C or below

In the case of dual output, ±voltages are adjusted simultaneously.
 When the output voltage adjustment is used, note that the output may be stopped when output voltage is set too high.

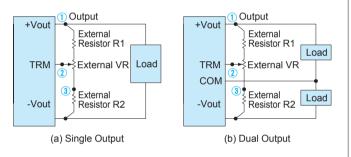


Fig.2.3 Connecting External Devices

Table 2.2 List of External Devices (MG1R5/MG3)

Output Voltage	Constant of External Device [Ω] (Adjustable within +10%, -5%)					
	VR	R1	R2			
3.3V	1k	150				
5V	1k	330	330			
12V	5k	15k	2.4k			
15V	5k 15k		1.2k			
±12V						
±15V						

Table 2.3 List of External Devices (MG6/MG10)

Output Voltage	Constant of External Device [Ω] (Adjustable within +10%, -5%)			
	VR	R1	R2	
3.3V	1k	680	150	
5V	1k	2.7k	560	
12V	5k	15k	2.4k	
15V	5k	15k	1.2k	
±12V	5k	22k	470	
±15V	5k	27k	470	

3 Wiring to Input/Output Pin

3.1 Wiring Input Pin

(1) External fuse

- Fuse is not built-in on input side. In order to protect the unit, install the normal-blow type fuse on input side.
- When the input voltage from a front end unit is supplied to multiple units, install the normal-blow type fuse in each unit.

Vin	MG1R5	MG3	MG6	MG10	
5	2.0A	3.15A	5.0A	6.3A	
12	1.6A	2.0A	2.5A	3.15A	
24	1.0A	1.6A	2.0A	2.5A	
48	0.8A	1.0A	1.6A	2.0A	
12-24 (MGF)	1.6A	2.0A	2.5A	3.15A	
24-48 (MGF)	1.0A	1.6A	2.0A	2.5A	
12-48 (MGX)	1.6A	_	3.15A	—	

Table 3.1 Recommended fuse (Normal-blow type)

(2) External capacitor on the input side

- Basically, MG series does not need any external capacitor.
- Adding a capacitor Ci near the input pin terminal and reduce reflected input noise from a converter.

Please connect the capacitor as needed.

- When you use a capacitor Ci, please use the one with high frequency and good temperature characteristics.
- If the power supply is to be turned ON/OFF directly with a switch, inductance from the input line will induce a surge voltage several times that of the input voltage and it may damage the power supply. Make sure that the surge is absorbed, for example, by connecting an electrolytic capacitor between the input pins.
- If an external filter containing L (inductance) is added to the input line, or a wire from the input source to the DC-DC converter is long, not only the reflected input noise becomes large, but also the output of the converter may become unstable. In such case, connecting Ci to the input pin terminal is recommended.
- If you use an aluminum electrolytic capacitor, please pay attention to its ripple current rating.

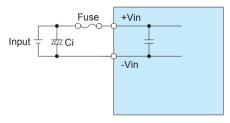


Fig3.1 Connecting Example of an External Capacitor to the Input Side

Model	MG1R5	MG3	MG6	MG10
Vin	NO INS	NIO5	MOO	MOTO
5	10 - 220	10 - 220	10 - 470	10 - 1000
12	10 - 100	10 - 100	10 - 220	10 - 470
24	10 - 47	10 - 47	10 - 100	10 - 220
48	10 - 22	10 - 22	10 - 47	10 - 100
12-24 (MGF)	10 - 47	10 - 47	10 - 100	10 - 220
24-48 (MGF)	10 - 22	10 - 22	10 - 47	10 - 100
12-48 (MGX)	10 - 100	_	10 - 220	_

Table 3.2 Recommended Capacitance of an External Capacitor on the Input Side [μ F]

*Please adjust the capacitance in accordance with a degree of the effect you want to achieve.

(3) Reverse input voltage protection

■If a reverse polarity voltage is applied to the input pin terminal, the power supply will fail. If there is a possibility that a reverse polarity voltage is applied, connect a protection circuit externally as described below.

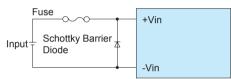
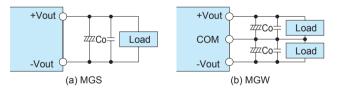


Fig3.2 Reverse Input Voltage Protection

3.2 Wiring Output Pin

If you want to further reduce the output ripple noise, connect an electrolytic capacitor or a ceramic capacitor Co to the output pin terminal as shown below.



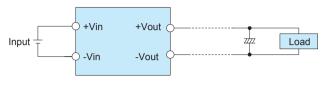

Fig.3.3 Connecting Example of an External Capacitor to the Output Side

Table 3.3 Recommended Capacitance of External Capacitor on the Output Side $[\mu F]$

Model	MG1R5	MG3	MG6	MG10
Vout	NO ING	NIO5	MOO	MOTO
3.3	0 - 220	0 - 220	0 - 220	0 - 220
5	0 - 220	0 - 220	0 - 220	0 - 220
12	0 - 100	0 - 100	0 - 100	0 - 100
15	0 - 100	0 - 100	0 - 100	0 - 100
±12	0 - 100	0 - 100	0 - 100	0 - 100
±15	0 - 100	0 - 100	0 - 100	0 - 100

- *If you use a ceramic capacitor, keep the capacitance within the rage between about 0.1 to 22uF.
- *Please adjust the capacitance in light of the effect you want to achieve.
- *If you need to use an external capacitor whose capacitance exceeds the range provided in Table 3.3, please contact us.

If the distance between the output and the load is long and therefore noise is created on the load side, connect a capacitor externally to the load as shown below.

4 Series/Redundancy Operation

4.1 Series Operation

Series operation is available by connecting the outputs of two or more power supplies, as shown below. Output current in series connection should be lower than the lowest rated current in each unit.

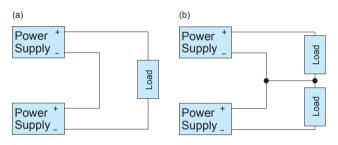


Fig.4.1 Examples of series operation

4.2 Redundancy Operation

■Parallel operation is not possible.

Redundancy operation is available by wiring as shown below.

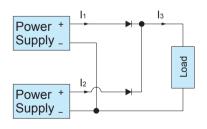
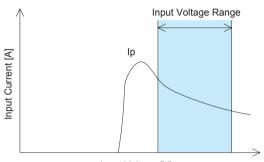


Fig.4.2 Redundancy operation


Even a slight difference in output voltage can affect the balance between the values of l₁ and l₂. Please make sure that the value of l₃ does not exceed the rated current for each power supply.

I₃ ≤ Rated Current Value

5 Input Voltage/Current Range

If you use a non-regulated power source for input, please check and make sure that its voltage fluctuation range and ripple voltage do not exceed the input voltage range shown in specifications.

Please select an input power source with enough capacity, taking into consideration of the start-up current (Ip), which flows when a DC-DC converter starts up.

Input Voltage [V]

Fig.5.1 Input Current Characteristics

6 Assembling and Installation

6.1 Installation

COSEL

When two or more power supplies are used side by side, position them with proper intervals to allow enough air ventilation. Ambient temperature around each power supply should not exceed the temperature range shown in derating curve.

6.2 Soldering Conditions

- (1) Flow Soldering : 260°C 15 seconds or less
- (2) Soldering Iron : maximum 360°C 5 seconds or less

6.3 Stress to Pin

- Applying excessive stress to the input or output pins of the power module may damage internal connections. Avoid applying stress in excess of that shown in Fig. 6.1.
- Input/output pin are soldered to the PCB internally. Do not pull or bend a lead powerfully.

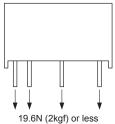


Fig.6.1 Stress onto Pins

- If it is expected that stress is applied to the input/output pin due to vibration or impact, reduce the stress to the pin by taking such measures as fixing the unit to the PCB by silicone rubber, etc.
- Due to prevent failure, PS should not be pulled after soldering with PCB.

6.4 Cleaning

If you need to clean the unit, please clean it under the following conditions.

Cleaning Method: Varnishing, Ultrasonic or Vapor Cleaning Cleaning agent: IPA (Solvent type)

Cleaning Time: Within total 2 minutes for varnishing, ultrasonic and vapor cleaning

- ■Please dry the unit sufficiently after cleaning.
- If you do ultrasonic cleaning, please keep the ultrasonic output at $15W/\ell$ or below.

7 Safety Standards

- To apply for a safety standard approval using the power supply, please meet the following conditions. Please contact us for details.
- Please use the unit as a component of an end device.
- •The area between the input and the output of the unit is isolated functionally. Depending upon the input voltage, basic insulation, dual insulation or enhanced insulation may be needed. In such case, please take care of it within the structure of your end-device. Please contact us for details.
- Safety approved fuse must be externally installed on input side.

8 Output Derating

■Please have sufficient ventilation to keep the temperature of point A in Fig.8.1 at Table8.1 or below. Please also make sure that the ambient temperature does not exceed 85°C.

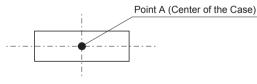


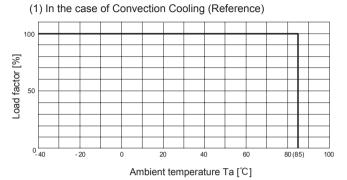
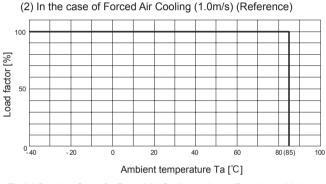
Fig.8.1 Temperature Measuring Point on the case (Top View)

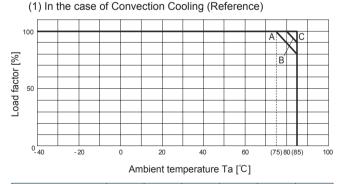
Table 8.1 Point A Temperature

Model	MG1R5	MG3	MG6	MG10
Point A	110℃	110℃	105℃	105℃

8.1 MGS1R5/MGW1R5 Derating Curve

■If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.


Fig.8.2 Derating Curve for Convection Cooling (Rated Input Voltage)

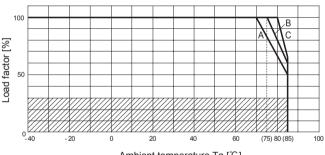
8.2 MGS3/MGW3 Derating Curve

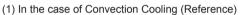
■If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.

Output Voltage 3.3 5 12 15 ±12 ±15 Input Voltage В В С С В В 5 12 С С С В В С 24 С С В С В С С С 48 А A В С

Fig.8.4 Derating Curve for Convection Cooling (Rated Input Voltage)

(2) In the case of Forced Air Cooling (1.0m/s) (Reference)

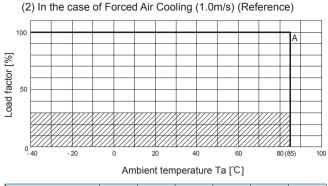

Output Voltage	3.3	5	12	15	±12	±15
5	А	А	А	Α	А	А
12	А	А	А	Α	Α	Α
24	А	А	A	A	A	Α
48	А	А	A	Α	A	A


Fig.8.5 Derating Curve for Forced Air Cooling (Rated input Voltage)

8.3 MGS6/MGW6 Derating Curve

■If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.

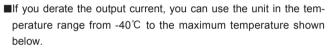
In the hatched area, the specification of Ripple, Ripple Noise is different from other area.



Ambient temperature Ta [°C]

Output Voltage	3.3	5	12	15	±12	±15
5	А	В	В	С	С	С
12	Α	В	С	С	С	С
24	А	В	С	С	С	С
48	А	Α	С	С	С	С

Fig.8.6 Derating Curve for Convection Cooling (Rated Input Voltage)



COSEL

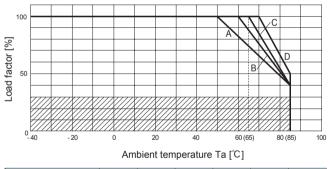

Output Voltage	3.3	5	12	15	±12	±15
5	А	А	А	А	А	Α
12	А	А	А	Α	А	Α
24	A	А	А	Α	Α	Α
48	Α	А	А	Α	Α	Α

Fig.8.7 Derating Curve for Forced Air Cooling (Rated input Voltage)

8.4 MGS10/MGW10 Derating Curve

In the hatched area, the specification of Ripple, Ripple Noise is different from other area.

(1) In the	e case of	Convection	Coolina	(Reference)	١

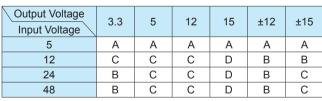
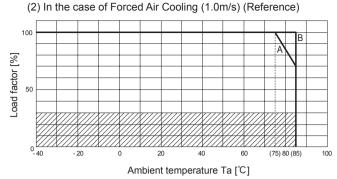
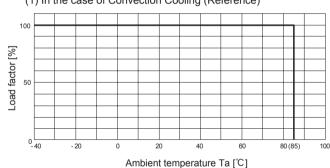



Fig.8.8 Derating Curve for Convection Cooling (Rated Input Voltage)



Output Voltage	3.3	5	12	15	±12	±15
5	Α	Α	Α	А	А	Α
12	В	В	В	В	В	В
24	В	В	В	В	В	В
48	В	В	В	В	В	В

Fig.8.9 Derating Curve for Forced Air Cooling (Rated input Voltage)

8.5 MGFS1R5/MGFW1R5 Derating Curve

If you derate the output current, you can use the unit in the temperature range from -40 $^\circ\!\mathrm{C}$ to the maximum temperature shown below.

(1) In the case of Convection Cooling (Reference)

Fig.8.10 Derating Curve for Convection Cooling (Rated Input Voltage)

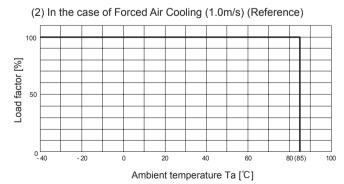
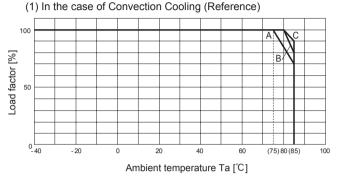
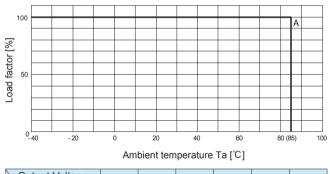



Fig.8.11 Derating Curve for Forced Air Cooling (1.0m/s) (Rated Input Voltage)

8.6 MGFS3/MGFW3 Derating Curve

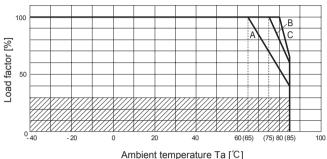

■If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.

Output Voltage	3.3	5	12	15	±12	±15
12-24	А	A	С	С	С	С
24-48	А	Α	В	В	В	В

Fig.8.12 Derating Curve for Convection Cooling (Rated Input Voltage)

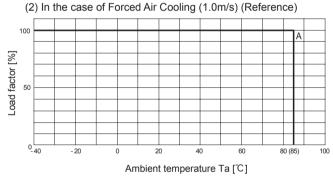
(2) In the case of Forced Air Cooling (1.0m/s) (Reference)

Input Voltage	3.3	5	12	15	±12	±15
12-24	А	A	А	А	A	A
24-48	А	А	А	А	А	Α


Fig.8.13 Derating Curve for Forced Air Cooling (Rated input Voltage)

8.7 MGFS6/MGFW6 Derating Curve

(1) In the case of Convection Cooling (Reference)

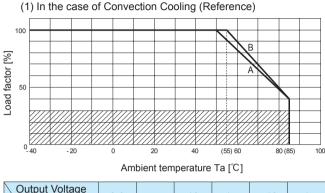

■If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.

In the hatched area, the specification of Ripple, Ripple Noise is different from other area.

Output Voltage	3.3	5	12	15	±12	±15
12-24	А	Α	С	С	С	С
24-48	Α	Α	С	С	В	В

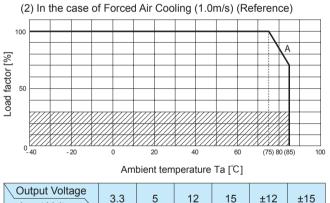
Fig.8.14 Derating Curve for Convection Cooling (Rated Input Voltage)

Output Voltage	3.3	5	12	15	±12	±15
12-24	А	А	A	А	А	А
24-48	А	А	Α	А	А	Α


Fig.8.15 Derating Curve for Forced Air Cooling (Rated input Voltage)

8.8 MGFS10/MGFW10 Derating Curve

COSEL

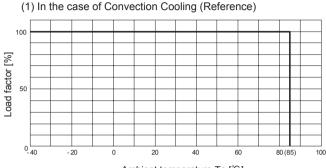

■If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.

In the hatched area, the specification of Ripple, Ripple Noise is different from other area.

Input Voltage	3.3	5	12	15	±12	±15
12-24	В	В	В	В	Α	A
24-48	В	В	В	В	В	В

Fig.8.16 Derating Curve for Convection Cooling (Rated Input Voltage)

 Input Voltage
 3.3
 5
 12
 15
 ±12
 ±15


 12-24
 A
 A
 A
 A
 A
 A
 A

 24-48
 A
 A
 A
 A
 A
 A
 A

Fig.8.17 Derating Curve for Forced Air Cooling (Rated input Voltage)

8.9 MGXS1R5/MGXW1R5 Derating Curve

■If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.

Ambient temperature Ta [°C]

Fig.8.18 Derating Curve for Convection Cooling (Rated Input Voltage)

(2) In the case of Forced Air Cooling (1.0m/s) (Reference)

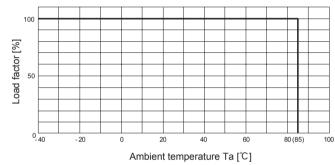
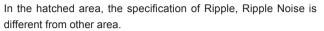



Fig.8.19 Derating Curve for Forced Air Cooling (1.0m/s) (Rated Input Voltage)

8.10 MGXS6/MGXW6 Derating Curve

■If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.

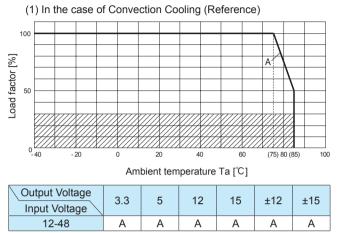
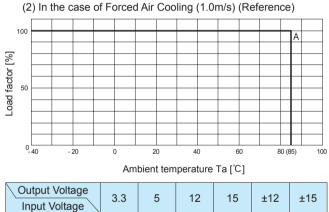



Fig.8.20 Derating Curve for Convection Cooling (Rated Input Voltage)

12-48 A A A A A A

Fig.8.21 Derating Curve for Forced Air Cooling (Rated input Voltage)

9 Input Derating

9.1 MGF3/MGF10 Input Derating

■MGFS3, MGFW3, MGFS10 and MGFW10 has derating by input voltage is required. shown Fig.9.1.

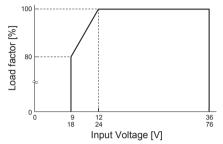
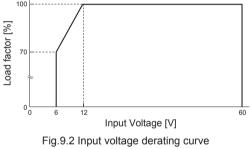



Fig.9.1 Input voltage derating curve (MGFS3, MGFW3, MGFS10, MGFW10)

9.2 MGX1R5/MGX6 Input Derating

MGXS1R5, MGXW1R5, MGXS6 and MGXW6 has derating by input voltage is required shown Fig.9.2.

(MGXS1R5, MGXW1R5, MGXS6, MGXW6)

10 Lifetime expectancy depends on stress by temperature difference

■Regarding lifetime expectancy design of solder joint, following contents must be considered. Be careful that the soldering joint is not stressed by temperature rise and down which occures by self-heating and ambient temperature change. The stress is accelerated by thermal-cycling, therefore the temperature difference should be minimized as much as possible if temperature rise and down occures frequently.

10.1 MG1R5/MG3 Lifetime expectancy depends on stress by temperature difference

COSEL

■Product lifetime expectancy depends on case temperature difference (Tc) and number of cycling in a day is shown in Fig.10.1, Fig.10.2 (It is calculated based on our accelerated process test result.) If case temperature changes frequently by changing output load factor etc., the above the lifetime expectancy design should be applied as well. And point A which is shown in Fig.10.3 must keep below 110°C.

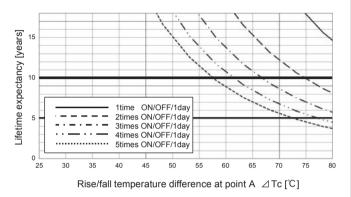


Fig.10.1 Lifetime expectancy against rise/fall temperature difference (MG1R5)

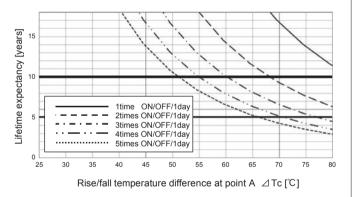
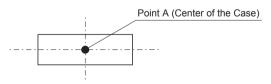
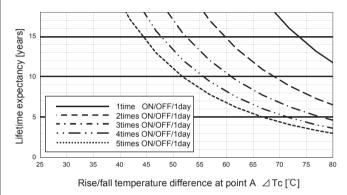
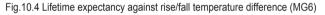


Fig.10.2 Lifetime expectancy against rise/fall temperature difference (MG3)


Fig.10.3 Temperature Measuring Point on the case (Top View)

The warranty period is basically 10 years, however it depends on the lifetime expectancy which is shown in Fig.10.1, Fig.10.2 if it is less than 10 years.

10.2 MG6/MG10 Lifetime expectancy depends on stress by temperature difference

■Product lifetime expectancy depends on case temperature difference (Tc) and number of cycling in a day is shown in Fig.10.4, Fig.10.5 (It is calculated based on our accelerated process test result.) If case temperature changes frequently by changing output load factor etc., the above the lifetime expectancy design should be applied as well. And point A which is shown in Fig.10.6 must keep below 105℃.

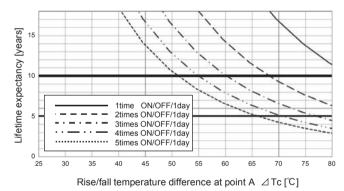


Fig.10.5 Lifetime expectancy against rise/fall temperature difference (MG10)

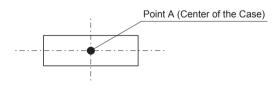


Fig.10.6 Temperature Measuring Point on the case (Top View)

The warranty period is basically 10 years, however it depends on the lifetime expectancy which is shown in Fig.10.4, Fig.10.5 if it is less than 10 years.

DC-DC Converters PCB Mount Type MG15, MG30 Instruction Manual

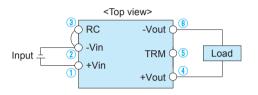

1 Pin Configuration

Table 1.1 Pin Configuration and Functions (MG15)

Pin No.	Pin Name	Function
1	+Vin	+DC Input
2	-Vin	-DC Input
3	RC	Remote ON/OFF
4	+Vout	+DC Output
	TRM	Output Voltage Adjustment (please see 2.5)
5	COM	GND of Output Voltage (for Dual Output)
6	-Vout	-DC Output

Single Output

COSEL

Dual(±)Output

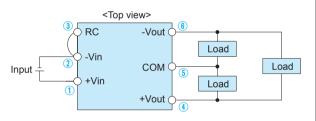
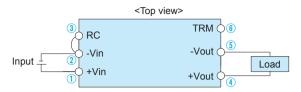



Fig.1.1 Pin Configuration (MG15)

Table 1	.2 Pin	Configuration	and	Functions	(MG30)
		o o i ingai a doi i	~		(

Pin No.	Pin Name	Function	
1	+Vin	+DC Input	
2	-Vin	-DC Input	
3	RC	Remote ON/OFF	
4	+Vout	+DC Output	
	-Vout	-DC Output (for Single Output)	
5	COM	GND of Output Voltage (for Dual Output)	
(6)	TRM	Output Voltage Adjustment (please see 2.5)	
6	-Vout	-DC Output (for Dual Output)	

Single Output

Dual(±)Output

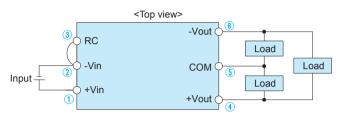


Fig.1.2 Pin Configuration (MG30)

2 Function

2.1 Input Voltage Range

If output voltage value doesn't fall within specifications, a unit may not operate in accordance with specifications and/or fail.

2.2 Overcurrent Protection

Overcurrent Operation

An overcurrent protection circuit is built-in and activated at 105% of the rated current or above. It prevents the unit from short circuit and overcurrent for less than 20 seconds. The output voltage of the power supply will recover automatically if the fault causing over current is corrected.

When the output voltage drops after OCP works, the power supply enters a "hiccup mode" where it repeatedly turns on and off at a certain frequency.

2.3 Overvoltage Protection (Excluding MG15)

Over Voltage Protection (OVP) is built in. When OVP works, output voltage can be recovered by shutting down DC input for at least one second or by turning off the remote control switch for one second without shutting down the DC input. The recovery time varies according to input voltage and input capacitance.

Remarks :

Note that devices inside the power supply may fail when a voltage greater than the rated output voltage is applied from an external power supply to the output terminal of the power supply. This could happen in in-coming inspections that include OVP function test or when voltage is applied from the load circuit.

2.4 Isolation

COSEL

When you run a Hi-Pot test as receiving inspection, gradually increase the voltage to start. When you shut down, decrease the voltage gradually by using a dial. Please avoid a Hi-Pot tester with a timer because, when the timer is turned ON or OFF, it may generate a voltage a few times higher than the applied voltage.

2.5 Output Voltage Adjustment Range(MGS/MGFS Only)

- The output voltage is adjustable through an external potentiometer. Adjust only within the range of ±10% of the rated voltage.
- To increase the output voltage, turn the potentiometer so that the resistance value between 2 and 3 becomes small.
- ■Please use a wire as short as possible to connect to the potentiometer and connect it from the pin on the power supply side. Temperature coefficient deteriorates when some types of resistors and potentiometers are used. Please use the following types.
 - Resistor----- Metal Film Type, Temperature Coefficient of $\pm 100 ppm/^{\circ}C$ or below
- Potentiometer... Cermet Type, Temperature Coefficient of ±300ppm/°C or below

■If output voltage adjustment is not required, open the TRM pin.

Output voltage adjustment may increase to overvoltage protection activation range based on determined external resister values.

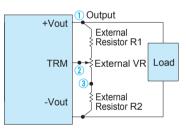


Fig.2.1 Connecting External Devices

Table 2.1	List of	External	Devices

Item #	Output Voltage	Constant of External Device [Ω] (Adjustable within ±10%)		
		VR	R1	R2
1	3.3V	1k	100	100
2	5V	1k	100	270
3	12V	5k	10k	1.5k
4	15V	5k	10k	1k
5	±5V			
6	±12V			
7	±15V			

2.6 Remote ON/OFF

The remote ON/OFF function is incorporated in the input circuit and operated with RC and -Vin. If positive logic control is required, order the power supply with "-R" option.

Tahle	22	Remote	ON/OFF	Specifications
Iable	∠ .∠	Remote		Specifications

	ON/OFF logic	Between RC and -Vin	Output voltage
Standard	Negative	L level (0 - 1.2V) or short	ON
Standard	Negative	H level (3 - 12V) or open	OFF
Optional	Positive	L level (0 - 1.2V) or short	OFF
-R		H level (3 - 12V) or open	ON

When RC is at low level, a current of 0.5mA typ will flow out.When remote ON/OFF is not used, short RC and -Vin.

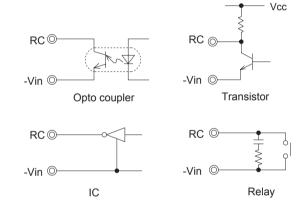


Fig.2.2 RC Connection Example

3 Wiring to Input/Output Pin

3.1 Wiring input pin

■MG series has Pi-shaped filter internally.

You can add a capacitor Ci near the input pin termilal and reduce reflected input noise from the converter. Please connect the capacitor as needed.

- When you use a capacitor Ci, please use the one with high frequency and good temperature characteristics.
- If the power supply is to be turned ON/OFF directly with a switch, inductance from the input line will induce a surge voltage several times that of the input voltage and it may damage the power supply. Make sure that the surge is absorbed, for example, by connecting an electrolytic capacitor between the input pins.

DC-DC Converters PCB Mount Type

MG15, MG30 Instruction Manual

If an external filter containing L (inductance) is added to the input line or a wire from the input source to the MG series is long, not only the reflected input noise becomes large, but also the output of the converter may become unstable. In such case, connecting Ci to the input pin is recommended.

COSEL

If you use an aluminum electrolytic capacitor, please pay attention to the ripple current rating.

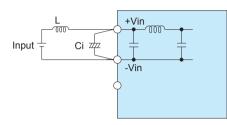


Fig.3.1 Connecting an External Capacitor to the Input Side

Table 3.1 Recommended Capacitance of an External Capacitor on the Input Side [µF]

Model Input Voltage[V]	MG15	MG30
12	220	220
24	100	100
48	47	47
12 - 24	100	100
24 - 48	47	47

- *Please adjust the capacitance in accordance with a degree of the effect you want to achieve.
- If a reverse polarity voltage is applied to the input pin, the power supply will fail.

If there is a possibility that a reverse polarity voltage is applied, connect a protection circuit externally as described below.

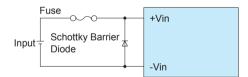


Fig.3.2 Connecting a Reverse Voltage Protection Circuit

3.2 Wiring output pin

If you want to further reduce the output ripple noise, connect an electrolytic capacitor or a ceramic capacitor Co to the output pin as shown below.

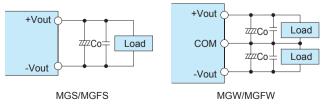
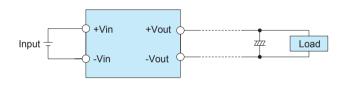


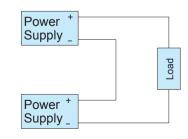
Fig.3.3 Connecting Example of an External Capacitor to the Output Side

Table 3.2 Recommended Capacitance of External Capacitor on the Output Side $[\mu F]$

Model Output Voltage[V]	MG15	MG30
3.3	470	470
5	470	470
12	150	150
15	100	100
±5	330	330
±12	100	100
±15	47	47

- *If you use a ceramic capacitor, keep the capacitance within the rage between about 0.1 to 22μ F.
- *Please adjust the capacitance in light of the effect you want to achieve.
- *If you need to use an unproven external capacitor which capacitance moreover the range provided in Table 3.2, please contact us for the assistance.
- If the distance between the output and the load is long and therefore the noise is generated on the load side, connect a capacitor externally to the load as shown below.




Fig.3.4 Connecting Example

4 Series/Redundancy Operation

4.1 Series Operation

(a)

■You can use the power supplies in series operation by wiring as shown below. In the case of (a) below, the output current should be lower than the rated current for each power supply with the lowest rated current among power supplies that are serially connected. Please make sure that no current exceeding the rated current flows into a power supply.

COSEL

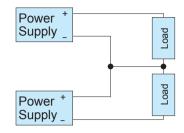


Fig.4.1 Series Operation

4.2 Redundancy Operation

You can use the power supplies in redundancy operation by wiring as shown below.

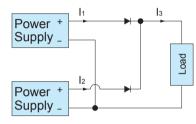


Fig.4.2 Redundancy Operation

Even a slight difference in output voltage can affect the balance between the values of I1 and I2.

Please make sure that the value of I₃ does not exceed the rated current for each power supply.

I₃ ≤ Rated Current Value

5 Input Voltage/ Current Range

If you use a non-regulated power source for input, please check and make sure that its voltage fluctuation range and ripple voltage do not exceed the input voltage range shown in specifications.

Please select an input power source with enough capacity, taking into consideration of the start-up current (Ip), which flows when a DC-DC converter starts up.

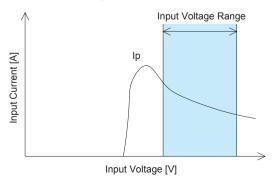


Fig.5.1 Input Current Characteristics

6 Assembling and Installation

6.1 Installation

When two or more power supplies are used side by side, position them with proper intervals to allow enough air ventilation. Ambient temperature around each power supply should not exceed the temperature range shown in derating curve.

6.2 Soldering Conditions

(1) Flow Soldering	: 260°C	15 seconds or less
(2) Soldering Iron	: maximum 360℃	5 seconds or less

6.3 Stress to Pin

- ■Applying excessive stress to the input or output pins of the power module may damage internal connections. Avoid applying stress in excess of that shown in Fig. 6.1.
- Input/output pin are soldered to the PCB internally. Do not pull or bend a lead powerfully.
- If it is expected that stress is applied to the input/output pin due to vibration or impact, reduce the stress to the pin by taking such measures as fixing the unit to the PCB by silicone rubber, etc.
- Due to prevent failure, PS should not be pull after soldering with PCB.



Fig.6.1 Stress onto Pins

6.4 Cleaning

If you need to clean the unit, please clean it under the following conditions.

Cleaning Method: Varnishing, Ultrasonic or Vapor Cleaning Cleaning agent: IPA (Solvent type)

- Cleaning Time: Within total 2 minutes for varnishing, ultrasonic and vapor cleaning
- Do not apply pressure to the lead and name plate with a brush or scratch it during the cleaning.
- Please dry the unit sufficiently after cleaning.
- ■If you do ultrasonic cleaning, please keep the ultrasonic output at 15W/ℓ or below.

7 Safety Standards

- To apply for a safety standard approval using the power supply, please meet the following conditions. Please contact us for details
- Please use the unit as a component of an end device.
- The area between the input and the output of the unit is isolated functionally. Depending upon the input voltage, basic insulation, dual insulation or enhanced insulation may be needed. In such case, please take care of it within the structure of your end-device. Please contact us for details.

8 Derating

COSEL

8.1 MG15 / MGF15 Derating Curve

- If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.
- (1) In the case of Convection Cooling 100 Load factor [%] (2) (1 Natural Convection 50 1 MGW15_05 / MGFW15_05 (2) others 0_40 - 20 0 20 40 (55) 60 80 (85) 100 Ambient temperature Ta [°C]

Fig.8.1 Derating Curve for Convection Cooling (Rated Input Voltage)

(2) In the case of Forced Air Cooling (1.0m/s)(Excluding MGW15_05/MGFW15_05)

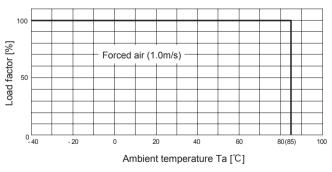


Fig.8.2 Derating Curve for Forced Air Cooling (1.0m/s) (Rated Input Voltage)

(3) In the case of Forced Air Cooling (1.0m/s, 2.5m/s)(MGW15_05/ MGFW15 05)

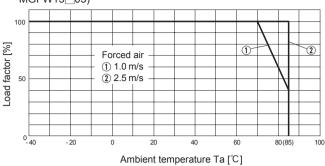


Fig.8.3 Derating Curve for Forced Air Cooling (1.0m/s,2.5m/s) (Rated Input Voltage)

(4) Temperature Measuring Point on the case.

- In case of forced air cooling, please have sufficient ventilation to keep the temperature of point A in Fig.8.4 at 105°C or below.
 - Please also make sure that the ambient temperature does not exceed 85℃. Point A (Center of the Case)

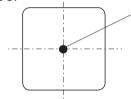


Fig.8.4 Temperature Measuring Point on the case (Top View)

8.2 MG30 / MGF30 Derating Curve

- If you derate the output current, you can use the unit in the temperature range from -40°C to the maximum temperature shown below.
- (1) In the case of Convection Cooling

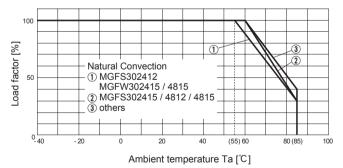


Fig.8.5 Derating Curve for Convection Cooling (Rated Input Voltage)

DC-DC Converters PC

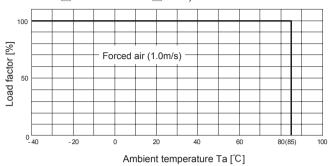


Fig.8.6 Derating Curve for Forced Air Cooling (1.0m/s) (Rated Input Voltage)

(3) In the case of Forced Air Cooling (1.0m/s, 1.5m/s)(MGW30_05 and MGFW30_12/15)

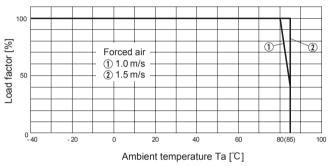


Fig.8.7 Derating Curve for Forced Air Cooling (1.0m/s,1.5m/s) (Rated Input Voltage)

(4) Temperature Measuring Point on the case.

■In case of forced air cooling, please have sufficient ventilation to keep the temperature of point A in Fig.8.8 at 110°C or below.

Please also make sure that the ambient temperature does not exceed $85\,^\circ\! \mathbb{C}$.

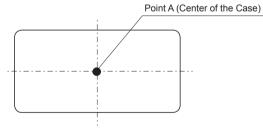
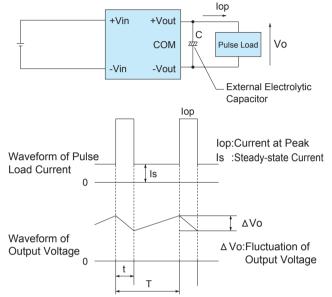



Fig.8.8 Temperature Measuring Point on the case (Top View)

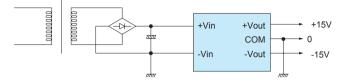
9 Peak Current (Pulse Load)

If a load connected to a converter is a pulse load, you can provide a pulse current by connecting an electrolytic capacitor externally to the output side.

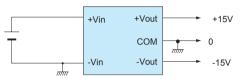
The average output current lav is expressed in the following formula.

$$lav = ls + \frac{(lop - ls) \times t}{T}$$

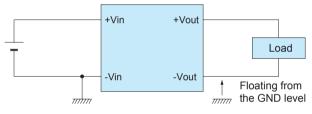
Required electrolytic capacitor C can be obtained from the following formula.

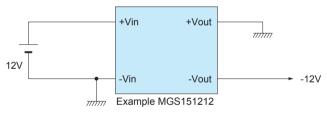

$$C = \frac{(lop - lav) \times t}{\Delta Vo}$$

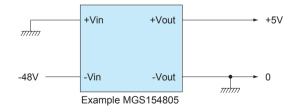
DC-DC Converters PCB Mount Type MG15, MG30 Instruction Manual

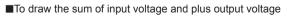

10 Using DC-DC Converters

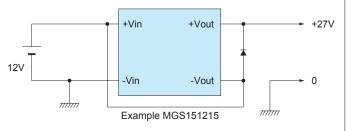
When using AC power source


COSEL

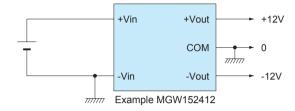

When using a battery-operated device

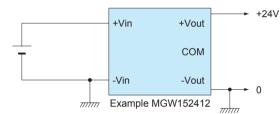

When a floating mechanism is required for the output circuit




To draw a reverse polarity output

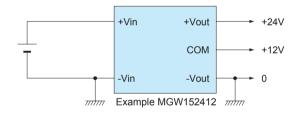
To provide a negative voltage to -Vin by using +Vin side of the converter as GND potential (0V)



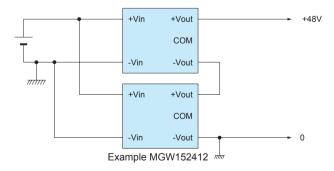

- *Output current should be the same as the rated output current of the converter.
- *Output current fluctuation is the sum of the input voltage fluctuation and the output voltage fluctuation of the converter.

■To use a dual output type

*Dual output type is typically used in the following manner.



*The unit can be used as a 24V type single output power supply as follows.



*Another way to use the unit is described below.

*The sum of +12V and +24V flows to the 0V line. Please make sure that this value does not exceed the rated output current of the converter.

■To draw 48V output

DC-DC Converters PCB Mount Type MG15, MG30 Instruction Manual

Note to use ±5V output 11

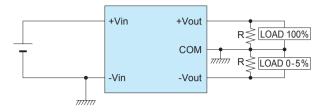


Fig.11.1 Example of decreasing the fluctuation of output voltage.

■If an output current is 0% to 5% of the rated current, the output is influenced by the other output load condition.

20% output voltage fluctuation may occer.

COSEL

To avoid the fluctuation, external bleeding resister is required to draw sufficient current.

12 Lifetime expectancy depends on stress by temperature difference

■Regarding lifetime expectancy design of solder joint, following contents must be considered.

It must be careful that the soldering joint is stressed by temperature rise and down which is occurred by self-heating and ambient temperature change.

The stress is accelerated by thermal-cycling, therefore the temperature difference should be minimized as much as possible if temperature rise and down is occurred frequently.

12.1 MG15 / MGF15 Lifetime expectancy depends on stress by temperature difference

Product lifetime expectancy depends on case temperature difference (⊿Tc) and number of cycling in a day is shown in Fig.12.1 (It is calculated based on our accelerated process test result.)

If case temperature changes frequently by changing output load factor etc., the above the lifetime expectancy design should be applied as well. And point A which is shown in Fig.12.2 must keep below 105℃

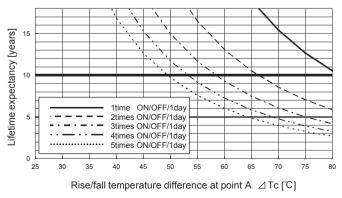
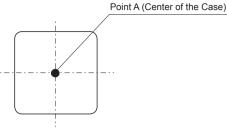
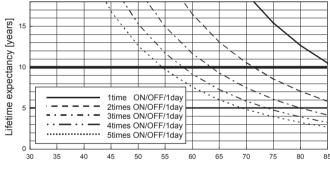


Fig.12.1 Lifetime expectancy against rise/fall temperature difference




Fig.12.2 Temperature measuring point (Top View)

The warranty period is basically 10 years, however it depends on the lifetime expectancy which is shown in Fig.12.1 if it is less than 10 years.

12.2 MG30 / MGF30 Lifetime expectancy depends on stress by temperature difference

Product lifetime expectancy depends on case temperature difference (⊿Tc) and number of cycling in a day is shown in Fig.12.3 (It is calculated based on our accelerated process test result.)

If case temperature changes frequently by changing output load factor etc., the above the lifetime expectancy design should be applied as well. And point A which is shown in Fig.12.4 must keep below 110℃.

Rise/fall temperature difference at point A ⊿Tc [°C]

Fig.12.3 Lifetime expectancy against rise/fall temperature difference

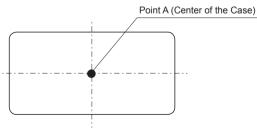


Fig.12.4 Temperature measuring point (Top View)

The warranty period is basically 10 years, however it depends on the lifetime expectancy which is shown in Fig.12.3 if it is less than 10 years.